Appendix A: Calculations for Data Quality Assessment

- QC check statistics
- Precision calcs
- Bias calcs
- PM stats
- Reporting: quarterly and annual

Site ID: {Enter Site ID}

Pollutant type: O.

-15.000

Bias (%)

2012 National Air Monitoring Conference-Denver, CO $Appendix A \ in \ Half-a-Day$

Part 1-ozone precision

What do you need to know about how the routine QC checks (~90 per qtr if done nightly) are used? How should YOU use them?

Sections 4 and 5—Use the DASC Tool to Understand Your QC Checks and Audit Results (like EPA does)

- Calculations of measurement uncertainty are carried out by EPA, and PQAOs should report the data for all appropriate measurement quality checks
- YOU do these calculations and charts easily, and save yourself time, money, and embarrassment

We will review each in both the DASC tool and the AMP255 report

First, what is the DASC tool?

- DASC tool was produced specifically for us to calculate the data assessment statistics in CFR in AMTIC Quality Indicator Assessment Reports (AMP255)
- http://www.epa.gov/ttn/amtic/gareport.html
- Easy way to explain and calculate data assessment statistics in CFR
- Excel spreadsheet
- Matches AMP255 (by site)
- Each equation is numbered and matches the numbers in CFR

What is the AMP255-Data Quality Indicators Report?

- AQS Standard Report to Compute the Statistics Outlined on 40 CFR Part 58 Appendix A
- Part of the Annual Certification Process to Verify Submission of QA and routine Data to AQS

- CORRESPONDS to what you calculate in the DASC tool
- But 1st let's review the helpful DASC file:

Data Assessment Statistical Calculator (DASC)

Contains 12 different worksheets including menu

Understanding the Terminology

- "Meas" is the concentration indicated by the monitoring organization's instrument
- "Audit" is the audit standard used in the QC check being measured, or "known" value
- (meas-audit)/audit= d;

Calibrations Results for Fourth Quarter 2011

Date	Monitor	Units	ZRef	ZMeas	- CT		Zero	Factor	SDiff%	ZStd	SStd	Status
10/2/2011 2:57 AM	03	ppm	0.000	0.001	0.081	0.080	0.001	1.019	-1.2	0.000	0.000	Valid
10/4/2011 2:57 AM	03	ppm	-0.001	0.001	0.081	0.080	0.001	1.016	-1.2	0.000	0.000	Valid
10/6/2011 2:57 AM	03	ppm	-0.001	0.000	0.081	0.081	0.001	1.005	0.0	0.000	0.000	Valid
10/8/2011 2:57 AM	03	ppm	-0.001	0.001	0.081	0.081	0.002	1.014	0.0	0.000	0.000	Valid
10/10/2011 2:57 AM	03	ppm	0.000	0.001	0.081	0.081	0.001	1.008	0.0	0.000	0.000	Valid
10/12/2011 2:57 AM	03	ppm	0.000	0.001	0.081	0.081	0.001	1.027	0.0	0.000	0.000	Valid
10/14/2011 2:57 AM	03	ppm	0.000	0.001	0.081	0.081	0.001	1.013	0.0	0.000	0.000	Valid
10/16/2011 2:57 AM	03	ppm	-0.001	0.001	0.081	0.081	0.002	1.011	0.0	0.000	0.000	Valid
10/18/2011 2:57 AM	03	ppm	0.000	0.001	0.081	0.081	0.001	1.011	0.0	0.000	0.000	Valid
10/20/2011 2:57 AM	03	ppm	-0.002	0.000	0.081	0.084	0.002	0.971	3.7	0.000	0.000	Valid
10/22/2011 2:57 AM	03	ppm	-0.002	0.000	0.081	0.086	0.002	0.947	6.1	0.000	0.000	Valid
10/24/2011 2:57 AM	03	ppm	-0.002	0.001	0.082	0.087	0.003	0.952	6.0	0.000	0.000	Valid
10/26/2011 2:57 AM	03	ppm	-0.002	0.000	0.082	0.086	0.002	0.947	4.8	0.000	0.000	Valid
10/28/2011 2:57 AM	03	ppm	-0.002	0.000	0.082	0.086	0.002	0.950	4.8	0.000	0.000	Valid
10/30/2011 2:57 AM	03	ppm	-0.002	0.001	0.082	0.086	0.003	0.958	4.8	0.000	0.000	Valid
11/1/2011 2:57 AM	03	ppm	-0.002	0.001	0.081	0.087	0.003	0.940	7.4	0.000	0.000	Valid
11/3/2011 2:57 AM	03	ppm	-0.002	0.001	0.082	0.088	0.003	0.941	7.3	0.000	0.000	Investical
11/5/2011 2:57 AM	03	ppm	-0.002	0.001	0.082	0.087	0.003	0.942	6.0	0.000	0.000	Valid
11/7/2011 2:57 AM	03	ppm	-0.002	0.001	0.082	0.087	0.003	0.955	6.0	0.000	0.000	Valid
11/9/2011 2:57 AM	03	ppm	-0.002	0.001	0.081	0.087	0.003	0.944	7.4	0.000	0.000	Valid
11/11/2011 2:57 AM	03	ppm	-0.002	0.001	0.081	0.087	0.003	0.946	7.4	0.000	0.000	linwall-d
11/13/2011 2:57 AM	03	ppm	-0.002	0.001	0.081	0.087	0.003	0.939	7.4	0.000	0.000	Invaird
11/15/2011 2:57 AM	03	ppm	-0.002	0.000	0.082	0.087	0.002	0.948	6.0	0.000	0.000	Valid
11/17/2011 2:57 AM	03	ppm	-0.002	0.001	0.082	0.087	0.003	0.949	6.0	0.000	0.000	Valid
11/19/2011 2:57 AM	03	ppm	-0.002	0.001	0.081	0.087	0.003	0.941	7.4	0.000	0.000	Invalid
11/21/2011 2:57 AM	03	ppm	-0.002	0.001	0.081	0.087	0.003	0.943	7.4	0.000	0.000	Valid
11/23/2011 2:57 AM	03	ppm	-0.002	0.001	0.082	0.088	0.003	0.944	7.3	0.000	0.000	Valid
11/25/2011 2:57 AM	03	ppm	-0.003	0.000	0.082	0.087	0.003	0.945	6.0	0.000	0.000	Valid
11/27/2011 2:57 AM	03	ppm	-0.002	0.001	0.082	0.087	0.003	0.951	6.0	0.000	0.000	Valid
11/29/2011 2:57 AM	03	ppm	-0.002	0.000	0.082	0.087	0.002	0.944	6.0	0.000	0.000	Valid
12/1/2011 2:57 AM	03	ppm	-0.002	0.001	0.082	0.086	0.003	0.961	4.8	0.000	0.000	Valid
12/3/2011 2:57 AM	03	ppm	-0.002	0.001	0.082	0.087	0.003	0.956	6.0	0.000	0.000	Valid
12/5/2011 2:57 AM	03	ppm	-0.002	0.001	0.081	0.087	0.003	0.948	7.4	0.000	0.000	Valid
12/7/2011 2:57 AM	03	ppm	-0.002	0.001	0.082	0.086	0.003	0.961	4.8	0.000	0.000	Valid
12/9/2011 2:57 AM	03	ppm	-0.002	0.001	0.081	0.087	0.003	0.942	7.4	0.000	0.000	Invalid
12/11/2011 2:57 AM	03	ppm	-0.002	0.001	0.082	0.087	0.003	0.950	6.0	0.000	0.000	Valid
12/12/2011 2:42 PM	03	ppm	-0.002	0.001	0.082	0.087	0.003	0.952	6.0	0.000	0.000	Valid
12/13/2011 2:57 AM	03	ppm	-0.002	0.001	0.081	0.086	0.003	0.949	6.1	0.000	0.000	Valid
12/15/2011 2:57 AM	03	ppm	-0.002	0.001	0.081	0.086	0.003	0.957	6.1	0.000	0.000	Valid
12/17/2011 2:57 AM	03	ppm	-0.002	0.001	0.081	0.086	0.003	0.953	6.1	0.000	0.000	Valid
12/19/2011 2:57 AM	03	ppm	-0.002	0.001	0.082	0.086	0.002	0.958	4.8	0.000	0.000	Valid
12/21/2011 2:57 AM	03	ppm	-0.002	0.001	0.081	0.087	0.003	0.945	7.4	0.000	0.000	Valid
12/23/2011 2:57 AM	03	ppm	-0.002	0.001	0.081	0.086	0.003	0.954	6.1	0.000	0.000	Valid
12/25/2011 2:57 AM	03	ppm	-0.002	0.001	0.082	0.087	0.003	0.949	6.0	0.000	0.000	Valid
12/27/2011 2:57 AM	03	ppm	-0.002	0.001	0.081	0.086	0.003	0.951	6.1	0.000	0.000	Valid
12/29/2011 2:57 AM	03	ppm	-0.003	0.001	0.082	0.087	0.004	0.954	6.0	0.000	0.000	Valid

GAS QC check precision statistics (CFR App A, 4.1)

- All statistics start from the difference between your instrument's indicated value and the known (audit) value (meas-known)/known= di
- Both precision (wiggle) and bias (jump) are calculated from d_i
- EPA calculates precision from these checks both by site and by PQAO
- These QC checks are then aggregated into "upper bound of the CV" for site and for PQAO
- The annual PE and NPAP results are used to <u>verify</u> the precision CVs

DASC tool will plot these values for vou in control charts:

	<u>y</u> ,	<u> </u>	•
Meas Val	Audit Val	d (Eqn.	
(Y)	(X)	1)	
0.08	0.081	-1.235	
0.08	0.081	-1.235	
0.081	0.081	0.000	
0.081	0.081	0.000	
0.081	0.081	0.000	
0.081	0.081	0.000	
0.081	0.081	0.000	_
0.081	0.081	0.000	
0.081	0.081	0.000	
0.084	0.081	3.704	
0.086	0.081	6.173	
0.087	0.082	6.098	
0.086	0.082	4.878	
0.086	0.082	4.878	
0.086	0.082	4.878	
0.087	0.082	6.098	

CV (%) (Eqn 2)

3.27

GAS QC check precision (cont.)

- You can be 90% sure that your true precision is less than this "upper bound of the CV"
- Guidance: each d_i should be <7% for O₃, 10% for other gasses
- Then calculate your overall CV (based on many d_i) by using DASC
- From DASC we see:

 Corresponds to CV in AMP255 (EPA calculates both for each site and for your whole PQAO network)

DATA QUALITY INDICATOR REPORT

1-Point Quality Control

PQAO: 1136 (Washington State Department Of Ecology)

Region	State	Site ID	POC	MT	Date	Date	#Req	# Obs	Complete	CV	Bias
10	WA 53-	053-0012	1	S	01-OCT-11	31-DEC-11	6	35	100	3.27	+ 5.0

Summary of precision:

- Calculated from routine QC checks d_i
- each check should be < 7% for O3, 10% other gasses
- Overall upper bound of CV calculated from d_i
- you can be 90% sure that your true precision is less than this "upper bound of the CV" (eq'n 2)

Thanks Shelly Eberly!

Part 2-ozone bias

What do you need to know about how the routine QC checks (~90 per qtr if done nightly) are used? How should YOU use them, for BIAS?

Bias statistics (CFR App A, 4.1.3):

- Remember that bias as well as precision starts from the difference between your instrument's indicated value and the known (audit) value (meas-known)/known= di
- bias (jump) is calculated from d_i
- Bias just based on the AVERAGE of the d_i with the sign taken into account (if your analyzer is always higher than the known, you have a high (+) bias

Bias is in DASC tool in the same sheet as precision (O3 P&B) and uses the same input:

GAS QC check bias statistics (CFR App A, 4.1)

- All statistics start from the difference between your instrument's indicated value and the known (audit) value (meas-known)/known= d;
- bias (jump) is also calculated from d_i
- Known bias uses the average of all the d_i values, and adds a factor based on t-statistic to get an upper bound for the bias
- Then, DASC looks at whether the bias is generally + or generally negative, based on the 25% and 75% percentiles—if both are + then you have a high bias

Bias:

- Bias is high
- Both percentiles are+ so bias is +

25th Percentile

1.9

75th Percentile

6.1

GAS QC check bias(cont.):

- you can be ~ 95% sure that the absolute value of your bias is less than this upper bound
- Guidance: each d_i should be <7% for O₃, 10% for other gasses
- The upper limit of your overall bias (based on many d_i) you calculate using DASC
- From DASC we see:

TDA soloulistes both for each site

Signed Bias (%)

 Corresponds to Bias in AMP255 (EPA calculates both for each site and for your whole PQAO network)

DATA QUALITY INDICATOR REPORT

1-Point Quality Control

3	PQAO: 1136 (Washington State Department Of Ecology)										
naina	Ctata	Cito ID	DOG	мт	Begin	End	# Dog	# Oha	%	CV	Dies
egion	State	Site ID	<u>POC</u>	MT	<u>Date</u>	Date	# Req	# Obs	Complete	CV	Bias
10	WA 53	-053-0012	2 1	S	01-OCT-11	31-DEC-11	6	35	100	3.27	+ 5.05

Summary of gas bias:

- Calculated from routine QC checks d_i
- each check should be < 7% for O_3 , 10% other gasses, then the:
- Overall upper limit of bias calculated from d_i
- Then look at the sign (and the chart) for whether your analyzer is biased high (+) or low (-)

Part 3-PM flow rate (FR) check stats

What do you need to know about how you can use your monthly FR check results? What about the 6-mo FR checks? How can the DASC help you make sense of them?

Routine monthly FR checks:

- Used by YOU to track your FR
- Used by EPA to estimate your bias and compare with your 6mo FR audit results
- Uses same stats as gaseous, starting with
 d_i
- (meas-known)/known= d;

Monthly FR verifications in DASC-what you can do:

Meas Val (Y)	Audit Val (X)	d (Eqn. 1)	
16.52	16.67	-0.9	YOU can use to track
16.71	16.67	0.2	FR and assess
16.5	16.67	-1.0	potential trends
17.21	16.67	3.2	
15.67	16.67	-6.0	

(You are not required to report these to AQS, but you can use DASC to track them)

6-mo FR audits-what EPA does:

6-mo FR audits-what shows up in AMP255:

JALITY INDICATOR REPORT

Annual Flow Rate Audits

State Department Of Ecology)

This is just the mean of the 2 6-mo FR checks that DASC calculated for you

90% probability limits for your flow rate over whole PQAO

PM stats-collocated

Use DASC for control chart

Precision Estimate (From Collocated Samples)

And to check AMP 255

CV (%) (Eqn 11) 4.69

PM stats-PEP

 EPA uses to estimate BIAS (and when you get your PEP results you can use DASC to generate confidence intervals for your bias)

PM FR stats summary:

- Use d_i for monthly and 6-mo FR verifications
- Use DASC to plot monthly FR
- EPA uses 6-mo FR audits to generate limits on your FR over your entire PQAO; check these yourself in **DASC**
- PEP is used for independent national bias estimates
- Collocated data is used for precision estimates; you

can calc in DASC also

CV (%) (Eqn 11)

Upper 4.69 ← bound of CV

Now for even more information:

- Reporting requirements of App. A
- Box and whisker charts EPA prepares 4 u

Guideline on the Meaning and the Use Of Precision and Bias Data Required by 40 CER Part 58 Appendix A

Version 1.1

Reporting in App. A:

5.1 Quarterly and Annual Reports

- Tables with DASC/AMP stats
- Bias, precision, completeness
- P.E. results
- Brief explanations (several sentences)
- Corrective action
- Lots of charts
- Available online:

– http://itep68.itep.nau.edu/itep_downloads /Appendix_A_Resources/

Air Monitoring Data Quality Assessment Report Fourth Quarter 2011

Prepared by Donovan Rafferty

Criteria Pollutant Summary Quality Indicator Report for AQS

2010

Single Point Precision and Bias Graphics for Criteria Pollutants

Region 10

http://www.epa.gov/ttn/amtic/qareport.html

Thanks!

- Melinda Ronca-Battista
 melinda.ronca-battista@nau.edu
- Curtis Miller cmiller@hoopa-nsn.gov
- Joe Cebe, Forest County Potawatomi
 Community, joe.cebe@fpotawatomi-nsn.gov
- Matt Plate, plate.plate.mathew@epa.gov
- Our materials at http://itep68.itep.nau.edu/itep_downloads/Appendix_A_Re sources/